Molecular Polarisability．Its Anisotropy in Aliphatic and Aromatic Structures．

By（Mrs．）C．G．Le Fèvre and R．J．W．Le Fèvre．

［Reprint Order No．4728．］
The use of depolarisation factors in the analysis of molecular polarisability is criticised on practical grounds，and an alternative information source is proposed．New determinations of the molar Kerr constants at infinite dilution are recorded for 26 substances，and the semi－axes of their optical polarisability ellipsoids calculated．Comparisons of data for structures related as alphyl－X and aryl－X suggest that exaltation of polarisability occurs preferentially in those directions for which electromeric shifts are， from organo－chemical theory，expected to be easiest．Anisotropic polaris－ abilities of bonds are considered incidentally，and signs detected of inductomeric polarisability effects in the tert．－butyl group．Results are generally in harmony with conclusions reached by Ingold in a recent monograph．

The work described in this paper was started with the intention of comparing the anisotropic polarisabilities of structures related as alphyl－X and aryl－X．We have previously dealt with the determination of＂molar Kerr constants＂$\left({ }_{m} K_{2}\right)$ of solutes and their extrapolation to infinite dilution（ J ．，1953，4041）；by the same methods，new measure－ ments have now been completed on 26 compounds，thus making available knowledge of $\infty\left({ }_{m} K_{2}\right)$ for each of the molecules listed in Table 1．All except nitromethane and 1：3：5－ trinitrobenzene have been examined in carbon tetrachloride．

Table 1．Molar Kerr constants＊at infinite dilution．

Temp．	Solute	$\infty\left({ }_{m} K_{2}\right) \times 10^{12}$	Temp．	Solute	$\infty\left({ }_{m} K_{2}\right) \times 10^{12}$
20°	$\mathrm{CH}_{3} \mathrm{~F}$	$28 \cdot 3 \pm 3$	25°	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	171 ± 3
25	$\mathrm{CH}_{3} \mathrm{Cl}$	$32 \cdot 3 \pm 2$	20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$	186 ± 1.5
25	$\mathrm{CH}_{3} \mathrm{Br}$	51.6 ± 0.7	20	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}_{2} \ddagger$	1073 ± 14
25	$\mathrm{CH}_{3} \mathrm{I}$	$54 \cdot 2 \pm 2$	20	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CN}$	1147 ± 35
25	$\mathrm{CH}_{3} \cdot \mathrm{NO}_{2} \dagger$	89.0 ± 3	20	1： $2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}$	$25.15 \pm 0 \cdot 3$
25	$\mathrm{CH}_{3} \cdot \mathrm{CN}$	$219 \cdot 5 \pm 6$	20	1：3－C ${ }_{6} \mathrm{H}_{4} \mathrm{Me}_{2}$	13.0 ± 0.2
25	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$	85.6 ± 3	25	$1: 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}$	$10 \cdot 6 \pm 0.5$
25	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$	146 ± 4	20	1： $4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	38.6 ± 2
25	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}$	203 ± 6	20	$1: 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2}$	$40 \cdot 3 \pm 2$
25	$\mathrm{C}_{2} \mathrm{Cl}_{6}$	4.60 ± 0.8	20	1：3：5－C66 ${ }_{3} \mathrm{Me}_{3}$	$10 \cdot 1 \pm 0 \cdot 3$
20	${ }^{\mathrm{C}_{6} \mathrm{H}_{6}}$	7.24 ± 0.4	20	1：3：5－C6 ${ }^{\text {H }}{ }_{3} \mathrm{Cl}_{3}$	${ }_{24.3}{ }^{\text {a }}$ 土 1
25	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$	12.8 ± 0.25	20	$1: 3: 5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}{ }^{\text {a }}$	${ }_{168}{ }^{\text {a }}$ 土 ${ }^{2}$
20	$\stackrel{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{H}_{5} \mathrm{Cl} \ddagger}{\ddagger}$	$56.8 \pm \begin{aligned} & \text { 145 } \\ & \pm 1.5\end{aligned}$	25 25	1：3： $\mathrm{C}_{6} \mathrm{Me}_{6}$	168 ${ }^{\text {土 }}$＋12
	$\mathrm{CH}_{6}+$	1 15	20°	$\mathrm{C}_{6} \mathrm{Cl}_{6}$	103．6 主 $0 \cdot 3$
＊With estimated standard errors． \ddagger Data recalculated from J ．，1953， 40			\dagger Examined in benzene．		

Before proceeding to our primary objective we need to consider two matters ：（a）the deduction from $\infty\left({ }_{m} K_{2}\right)$ and other experimental quantities of estimates of molecular polarisability ellipsoids，and（b）the calculation of bond polarisabilities．
(a) Calculation of Molecular Polarisability Ellipsoids.-The problem, in the general case, is to find the principal half-axes, b_{1}, b_{2}, and b_{3}, of the ellipsoid of polarisability for a given molecule. Three equations are therefore necessary. The first of these involves ${ }_{m} K_{2}$:

$$
\begin{equation*}
{ }_{m} K_{2}=2 \pi N\left(\theta_{1}+\theta_{2}\right) / 9 \tag{1}
\end{equation*}
$$

The second is derived from the electronic polarisation:

$$
\begin{equation*}
{ }_{\mathbf{E}} P=4 \pi N\left(b_{1}+b_{2}+b_{3}\right) / 9 \tag{2}
\end{equation*}
$$

The third expresses the depolarisation factor Δ of scattered light in terms of the required half-axes:

$$
\begin{equation*}
10 \Delta /(6-7 \Delta)=\left[\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}\right] /\left(b_{1}+b_{2}+b_{3}\right)^{2} \tag{3}
\end{equation*}
$$

In (1), θ_{1} and θ_{2} may be expanded as shown by the relations Nos. (13) and (14) in our previous paper. In particular, θ_{1} becomes

$$
\begin{equation*}
\theta_{1}=\left({ }_{\mathrm{D}} P / 45 \boldsymbol{k} T \cdot{ }_{\mathrm{E}} P\right)\left[\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}\right] \tag{4}
\end{equation*}
$$

If therefore ${ }_{m} K_{2},{ }_{\mathrm{E}} P$, the distortion polarisation ${ }_{\mathrm{D}} P$, $\mu_{\text {resultant }}$ (and its direction of action with respect to the polarisability ellipsoid), and Δ are known for a substance, b_{1}, b_{2}, and b_{3} can be computed.

Unfortunately, however, depolarisation factors are available only for a few dozen molecules (Cabannes, " La Diffusion Moléculaire de la Lumière," Les Presses Universitaires de France, 1929, lists 61) of fairly simple type. Moreover, Δ is markedly affected by state, so that for the purposes of equation (3) one requires " la dépolarisation limite" (Cabannes, $o p . c i t ., \mathrm{pp} .38,105)$, i.e., Δ for the scattering from a gas "assez voisin de l'état parfait." Recorded values for the same substance are not always in agreement with one another.

In a limited number of cases Δ can be checked, since for structures having, by symmetry, $b_{1}=b_{2}$ or $b_{2}=b_{3}$, half-axes may be computed without recourse to Δ. Table 4 contains 15 instances where this has been done. The b's so obtained can be used to estimate the numerator of the right-hand side of (3), and the result compared with the figure deduced via $2 \delta_{0}{ }^{2}=10 \Delta /(6-7 \Delta)$. An analysis of the five cases for which the requisite depolarisation factors have been reported is shown as Table 2. For brevity, A is written for $\left(b_{1}-b_{2}\right)^{2}+\left(b_{2}-b_{3}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}$. Table 2 includes also the magnitudes of θ_{1}, for two unsymmetrical molecules, obtained from $2 \delta_{0}{ }^{2}$ and ${ }_{\mathrm{E}} P$, set against the related $\left(\theta_{1}+\theta_{2}\right)$ given by our experiments. Corresponding quantities derived from Stuart and Volkmann's observations (S. and V.) on gases (Ann. Physik, 1933, 18, 121) are inserted throughout.

Table 2.

${ }^{a}$ Ref. 2 below Table 4. ${ }^{b}$ Ref. 16 below Table 4. © From present measurements. ${ }^{d}{ }_{\infty}\left({ }_{m} K_{2}\right)=$ -28.5×10^{-12} (cf. J., 1953, 4041).

We note a general lack of concordance between the values of A from $\delta_{0}{ }^{2}$ and those from $\infty\left({ }_{m} K_{2}\right)$. Where the work of Stuart and Volkmann is concerned, disagreement is restricted to methyl chloride and chloroform; A for benzene, toluene, and m-xylene is of the order to be expected from $\delta_{0}{ }^{2}$, and-where two estimates of $\delta_{0}{ }^{2}$ exist in the literature-from that (higher) $\delta_{0}{ }^{2}$ quoted by Cabannes ($o p$. cit.).

We have previously ($J ., 1953,4041$) commented on the fact that, after conversion to
20°, Stuart and Volkmann's K_{1} for benzene leads to a molar Kerr constant of ca. 17×10^{-12}, whereas for the pure liquid or at infinite dilution in carbon tetrachloride the ${ }_{m} K$ is ca. 7×10^{-12}. A similar situation is now revealed for toluene and m-xylene, the $\infty\left({ }_{m} K_{2}\right)$ figure for each of which could only be reconciled with its $\delta_{0}{ }^{2}$ if θ_{2} were negativea condition which is a priori unlikely. We are certain of our measured $\infty\left(m K_{2}\right)$ values : the system $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CCl}_{4}$ has been re-examined de novo for 8 concentrations, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}-\mathrm{CCl}_{4}$ is here reported for 13 . Either, therefore, θ_{1} is unexpectedly solvent-dependent, or Stuart and Volkmann's observations are erroneously large. As to the former possibility, it is relevant that the molar Kerr constants of pure liquid benzene, toluene, or xylene are close to the $\infty\left(m K_{2}\right)$ values now found in carbon tetrachloride-no marked solvent action is apparent. As to the latter possibility, we have considered the experimental details published by the German authors (Z. physikal. Chem., 1932, 17, B, 429) when recording B for benzene vapour as 1.8×10^{-10}. We calculate that, in the apparatus described by them, this corresponds to a phase difference between 0.00005 and 0.00015λ; the threshold of detectability, however, for such optical determinations must be taken to be that (viz., $5 \times 10^{-5} \lambda$) stated by Szivessy (Z. Physik, 1921, 6, 311), who devised the technique used. It is our intention later to reinvestigate benzene and other gases; in the meantime, since our (repeatedly confirmed) measurements involve phase differences of $0.00025-0.02 \lambda$, we feel justified in suspecting both the observations of Stuart and Volkmann and the depolarisation factors tabulated by Cabannes, at least when they relate to molecules of low-or nopolarity. Accordingly, procedures whereby b_{1}, b_{2}, and b_{3} may be deduced without the use of equation (3) become highly desirable, and will be discussed next.

A priori estimation of b_{3}. Table 4 contains data for six derivatives of benzene for which $b_{1}=b_{2}$. (For clarity we mention here our nomenclature for the mutually perpendicular half-axes of the molecular optical polarisability ellipsoids quoted : for a polar molecule, b_{1} applies along the direction of action of the resultant dipole moment, and the lesser of the remaining two b 's is written as b_{3}; for a non-polar molecule, the largest polarisability is denoted by b_{1} and the smallest by b_{3}.) In particular, the cases of the tri- and hexa-methyland -chloro-benzenes are valuable in providing some support for the assumption that b_{3} can be treated additively. In Table 3 we show the differences, Δb_{3}, between the b_{3} 's observed for a given molecule and the b_{3} found for benzene.

Table 3. Values of $\Delta \mathrm{b}_{3} \times 10^{23}$ per molecule and per substituent.

It is seen that the changes in b_{3} caused by three further substituents are somewhat less than those caused by the first three. Such an effect is to be expected on elementary electrostatic theory; it might, however, be connected with non-planarity of the hexasubstituted molecules-a condition which has been suggested for hexachlorobenzene (Bastiansen and Hassel, Acta Chem. Scand., 1947, 1, 489) and for octamethylnaphthalene but not for hexamethylbenzene (cf. Donaldson and Robertson, J., 1953, 17). By addition to the "found" Δb_{3} 's for benzene of the appropriate " Δb_{3} per substituent" (obtained from the 1:3:5-trisubstituted derivatives) estimates of b_{3} for toluene, chlorobenzene, bromobenzene, and nitrobenzene can be produced, and with their help the calculation of b_{1} and b_{2} for each of these molecules becomes possible. Results are shown in Table 4 ; they may be compared with the following, deduced from the same $\infty\left({ }_{m} K_{2}\right)$ figures in conjunction with the depolarisation factors also quoted in Table 4.

	$10^{23} b_{1}$	$10^{23} b^{2}$	$10^{23} b_{3}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$	(Solution unreasonable, see above)		
$\mathrm{C}_{6} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Cl}$	$1.44{ }^{5}$	1.40 1.47	0.685 0.736
$\mathrm{C}_{6} \mathrm{H}^{6} \cdot \mathrm{NO}^{\text {c }}$	$1 \cdot 60$	1.36	0.690

It is seen that the values of b_{1} obtained for chloro- or bromo-benzene by either method are similar, whereas for nitrobenzene they are substantially identical. For the last named-as for many molecules of high polarity-this is not surprising because $\infty\left(m K_{2}\right)^{\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{NO}_{2}}$ is large, so that $\theta_{2}{ }^{\mathrm{C}_{6} \cdot \mathrm{H}_{6} \cdot \mathrm{NO}_{2}}$ greatly exceeds $\theta_{1} \mathrm{O}_{6} \mathrm{H}_{6} \cdot \mathrm{NO}_{2}$. Indeed, if θ_{1} is neglected and θ_{2} solved for the two unknowns b_{1} and ($b_{2}+b_{3}$), these emerge as 1.61×10^{-23} and 2.04×10^{-23}, respectively; obviously, incorrectness of $\delta_{0}{ }^{2}$ is relatively less significant here than it is when θ_{1} and θ_{2} are not so unequal, or at the extreme-as with toluene or m-xylene-of the same order of magnitude. Since in our judgment molar Kerr constants of solutes can be measured with more certainty than depolarisation factors of vapours, we prefer, for these five substances, the entries in Table 4 to the polarisabilities shown a few lines above.

The analyses of the $\infty\left({ }_{m} K_{2}\right)$'s for fluoro-, iodo-, and cyano-benzene remain to be discussed. No depolarisation factors for these compounds are on record, and the method described above cannot be used because the $1: 3: 5$-trisubstituted benzenes required are either unknown or too insoluble. We therefore propose, faute de mieux, to compute b_{3} with the help of measurments on the axially symmetric aliphatic analogues.

If we represent the polarisability of a link between two atoms as an ellipsoid having semi-axes, b_{L}, b_{T}, and b_{V}, where subscript L marks the longitudinal polarisability, and T and V mark the two transverse polarisabilities, then for single bonds $b_{V}=b_{7}$. Differences shown in Table 3-provided the polarisability of the basic benzenoid skeleton is unaffected by replacement of hydrogen-are clearly estimates of $b_{T} \mathrm{C}_{\Delta \mathrm{r}} \mathrm{X}-b_{T} \mathrm{C}_{\Delta-} \mathrm{H}$; for the present we shall assume that this quantity is close to $b_{3}{ }^{\mathrm{CH}_{3}-\mathrm{X}}-b_{3} \mathrm{CH}_{4}$.

Watson and Ramaswamy (Proc. Roy. Soc., 1936, A. 156, 144) have made careful measurements of, inter alia, the dispersion of the refractive index of methane, whence ${ }_{\mathrm{E}} P^{\mathrm{CH}_{4}}=6.45$ c.c. and by symmetry $b_{1}{ }^{{ }^{\mathrm{CH}_{4}}}=b_{2}{ }^{\mathrm{CH}}{ }_{4}=0.254 \times 10^{-23}$. The values of $\Delta b_{3}=$ $b_{3}{ }^{\text {molecule }}-b_{3}{ }^{\text {CH }}$ 4 are, from Table 4, as follows :

Molecule	$\mathrm{CH}_{3} \mathrm{~F}$	$\mathrm{CH}_{3} \mathrm{I}$	$\mathrm{CH}_{3} \cdot \mathrm{CN}$
$10^{23} \times \Delta b_{3}$	-0.022	$0 \cdot 403$	$0 \cdot 116$

The sums of these with $b_{3} \mathrm{O}_{\mathrm{a}} \mathrm{H}_{4}$ have been taken as the b_{3} 's of the monosubstituted benzenes concerned. Figures so obtained are indicated in Table 4, and in the text below, by braces.

As a check we may apply a parallel procedure to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$, and compare the b_{1} and b_{2} so found with those derived from 1:3:5-trichloro- or -tribromo-benzenes:

	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$		$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	1.48	$1 \cdot 16$	$\{0.890\}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	1.69	$1 \cdot 18$	\{0.978\}
	$1 \cdot 47$	1-24	(0.818)		1.68	1.21	(0.956)

It is seen that variations in b_{3} affect b_{2} rather than b_{1}, and that b_{1} and b_{2} by either method are the same to two significant figures.

Table 4 summarises calculations, made in each case by one of the above three methods, for the 29 molecules considered in this paper. Comment on these results can be made more appropriately after the discussion in the next section.
(b) Calculation of Bond Polarisability Ellipsoids.-The suggestion referred to above that individual bonds may be described by polarisability ellipsoids was first advanced qualitatively by Meyer and Otterbein (Physikal. Z., 1931, 32, 290; 1934, 35, 249). Sachsse (ibid., 1935, 36, 357), Wang (J. Chem. Physics, 1939, 7, 1012), and Denbigh (Trans. Faraday Soc., 1940, 36, 936) later attempted to evaluate the half-axes of such ellipsoids from Kerr constant and refractivity data.

In order to simplify the following discussion we shall write $b_{L}{ }^{\mathrm{O}-\mathrm{H}}=A ; \quad b_{V}{ }^{\mathrm{O}-\mathrm{H}}=b_{T}{ }^{\mathrm{O}-\mathrm{H}}$ $=B ; b_{L}{ }^{\mathrm{O}-\mathrm{Cl}}=C ; b_{D}{ }^{\mathrm{O}-\mathrm{Cl}}=b_{T}{ }^{\mathrm{O}-\mathrm{Cl}}=D ; b_{L}{ }^{\mathrm{O}-\mathrm{O}}=E ;$ and $b_{V} \mathrm{C}-\mathrm{C}=b_{T}{ }^{\mathrm{C}-\mathrm{C}}=F$.

Both Wang and Denbigh, in evaluating A, B, E, and F, started by adopting tetrahedral angles and using the following expressions:

$$
\begin{gather*}
4 A / 3+8 B / 3=b_{1}{ }^{\mathrm{OH}}(\text { ex molar refraction }) \tag{5}\\
\left.E+2 F+6 A+12 B=\left(b_{1}+b_{2}\right)^{\mathrm{O}_{2} \mathrm{H}_{0}} \text { (ex molar refraction }\right) \tag{6}\\
E+2 A / 3+16 B / 3=b_{1} \mathrm{O}_{\mathbf{3}} \mathrm{H}_{\mathbf{4}}(\text { ex Kerr effect }) \tag{7}
\end{gather*}
$$

The only other possible equation for a system having A, B, E, and F alone, would have been the following :

$$
\begin{equation*}
F+8 A / 3+10 B / 3=b_{2}{ }^{\mathrm{C}_{3} \mathrm{H}_{4}} \tag{8}
\end{equation*}
$$

thus yielding at first sight four equations and four unknowns; yet on inspection, it is seen that $(6)=(7)+$ twice (8); accordingly there remain three equations and four unknowns. Denbigh did not explicitly quote a fourth equation, but said "similar equations can

Table 4. Calculation of molecular polarisability ellipsoids.

Solute	Temp.	$\begin{gathered} 10^{33} \times \\ \left(\theta_{1}+\theta_{2}\right) \end{gathered}$	$\left.\begin{array}{c} { }_{\mathrm{D}} P \\ (\mathrm{c} . \mathrm{c} . \end{array}\right)$	$\begin{gathered} \mathbf{E} P \\ (\text { c.c. }) \end{gathered}$	$\begin{gathered} 2 \delta_{0}{ }^{2} \times \\ 10^{3} \end{gathered}$	μ, D	$10^{23} b_{1}$	$10^{23} b_{3}$	$10^{23} b_{3}$ *
$\mathrm{CH}_{3} \mathrm{~F}$.............	20°	6.73	$9{ }^{1}$	$6.6{ }^{1}$	-	1.71	0.316	0.232	0.232
$\mathrm{CH}_{3} \mathrm{Cl}$..............	25	$7 \cdot 68$	$13.6{ }^{3}$	$11.2{ }^{4}{ }^{4}$	$28.4{ }^{2}$	1.72	0.509	0.411	0.411
$\mathrm{CH}_{3} \mathrm{Br}$	25	12.27	$14.7{ }^{5}$	$14.0{ }^{4}$		$1 \cdot 70$	0.656	0.499	0.499
$\mathrm{CH}_{3} \mathrm{I}$	25	12.90	$21.9{ }^{6}$	$18.5{ }^{6}$		1.48	0.872	0.657	$0 \cdot 657$
$\mathrm{CH}_{3} \cdot \mathrm{NO}_{2}$	25	21.2	$18.3{ }^{7}$	$12.0{ }^{8}$		$3 \cdot 14$	0.518	0.717	$0 \cdot 183$
$\mathrm{CH}_{3} \cdot \mathrm{CN}$	25	$52 \cdot 2$	$11.7{ }^{9}$	$10 \cdot 8_{5}{ }^{10}$		$3 \cdot 37{ }_{5}$	0.543	0.370	$0 \cdot 370$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$	25	$20 \cdot 36$	$29.3{ }^{6}$	$24.9{ }^{6}$	-	$2 \cdot 14$	$1.09{ }_{2}$	0.926	0.926
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$	25	$34 \cdot 7$	$33.3{ }^{6}$	$28.3{ }^{6}$	-	$2 \cdot 19$	$1.29{ }_{4}$	$1.02{ }_{6}$	$1.02{ }_{6}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}$	25	48.3	$36.9{ }^{6}$	$33 \cdot 5{ }^{6}$		$2 \cdot 14$	$1.57{ }_{8}$	$1 \cdot 19{ }_{1}$	$1 \cdot 19{ }_{1}$
$\mathrm{C}_{2} \mathrm{Cl}_{6}$	25	1.09	$45 \cdot 1{ }^{11}$	$39 \cdot 6{ }^{12}$		0	$1 \cdot 65{ }_{7}$	$1 \cdot 65{ }_{7}$	$1 \cdot 36{ }_{1}$
$\mathrm{C}_{6} \mathrm{H}_{6}$	20	1.72	$26.99_{5}{ }^{11}$	$25 \cdot 0_{5}{ }^{13}$	$77 \cdot 3^{2}$	0	$1 \cdot 11{ }_{4}$	$1 \cdot 11{ }_{4}$	$0^{0.73}{ }_{3}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$............	25	$3 \cdot 04$	$32.7{ }^{\circ}$	$29.9{ }^{14}$	$74 \cdot 7{ }^{2}$	0.34	$1.37{ }_{7}$	$1.25{ }^{4}$	(0.904)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$	20	13.5	$31.3{ }^{6}$	$24.9{ }^{6}$	-	1.38	1-12 ${ }_{6}$	$1 \cdot 10{ }_{6}$	\{0.711\}
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	20	34.5	$34.9{ }^{15}$	$29.9{ }^{13}$	$87.8{ }^{16}$	1.59	$1.47{ }_{2}$	$1.24{ }_{4}$	(0.818)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	25	$40 \cdot 7$	$35 \cdot 6{ }^{17}$	$32.6{ }^{18}$	$93 \cdot 8{ }^{16}$	1.51	$1.68{ }_{4}$	$1.21{ }_{3}$	(0.956)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$	20	$44 \cdot 2$	$41.4{ }^{6}$	$38 \cdot 3^{6}$	100	1.39	$1.98{ }_{4}$	$1 \cdot 40{ }_{7}$	$\{1 \cdot 136\}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}_{2}$	20	$255 \cdot 2$	$36.2{ }^{15}$	$30 \cdot 9{ }^{13}$	100^{16}	3.95	$1.60{ }_{4}$	$1.38{ }_{6}$	(0.662)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}^{\circ}$	20	$272 \cdot 8$	$33.1{ }^{9}$	$30 \cdot 2{ }^{13}$	-	4.02	$1.63{ }_{8}$	$1.21{ }_{1}$	\{0.849\}
$1: 2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}$	20	$5 \cdot 98$	$35.9{ }^{\text {8 }}$	$34 \cdot{ }^{13}$	- ${ }^{18}$	0.53	$1.63{ }_{9}$	$1.35{ }_{2}$	(1.075)
$1: 3-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}$	20	$3 \cdot 09$	$35.9{ }^{6}$	$34 \cdot 5^{13}$	$89.4{ }^{16}$	$0 \cdot 26$	$1.32{ }_{7}$	$1.68{ }_{2}$	(1.075)
$1: 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}$	25	$2 \cdot 52$	$36 \cdot 6{ }^{11}$	$34 \cdot 6{ }^{13}$	-	0	$1.61{ }_{3}$	$1 \cdot 40{ }_{2}$	(1.075)
1 : $4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	25	$9 \cdot 18$	$36.9{ }^{11}$	$34 \cdot 7{ }^{13}$	--	0	$1.92{ }_{3}$	$1.27{ }_{6}$	(0.903)
$1: 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2}$	20	$9 \cdot 58$	$40 \cdot 711$	$40 \cdot 14$	-	0	$2 \cdot 18{ }_{8}$	$1.37{ }^{\text {a }}$	(1-179)
$1: 3: 5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}$.	20	$2 \cdot 40$	41.911	$39.2{ }^{13}$	-	0	$1.69{ }_{6}$	$1.69{ }_{6}$	1.247
$1: 3: 5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3} \ldots$	20	8.94	$45.0{ }^{11}$	$39 \cdot 3{ }^{4}$	-	0	$1.83{ }_{2}$	$1.83{ }_{2}$	0.988
1:3:5-C ${ }_{6} \mathrm{H}_{3} \mathrm{Br}_{3} \ldots$	20	$5 \cdot 78$	$50 \cdot 1{ }^{11}$	$47.5{ }_{5}{ }^{4}$	-	0	$2 \cdot 109$	$2 \cdot 109$	$1 \cdot 40{ }_{2}$
$1: 3: 5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{3}$	25	39.9	$54 \cdot 2{ }^{11}$	41.74	-	0	$2 \cdot 20{ }_{5}$	$2 \cdot 20{ }_{5}$	0.51 ,
$\mathrm{C}_{6} \mathrm{Me}_{6}$	25	$3 \cdot 80$	$54 \cdot 6{ }^{11}$	52.54	-	0	$2 \cdot 263$	$2 \cdot 263$	1.681
$\mathrm{C}_{6} \mathrm{Cl}_{6} \quad \ldots . . . \ldots \ldots \ldots$.	20	$24 \cdot 6$	$63.5{ }^{11}$	$53.4{ }^{4}$	-	0	$2 \cdot 56$	$2 \cdot 56$	$1 \cdot 18{ }_{8}$

References. ${ }^{1}$ Smyth and McAlpine, J. Chem. Physics, 1934, 2, 499. ${ }^{2}$ Cabannes and Granier, Compt. vend., 1926, 182, $885 .{ }^{3}$ Barclay and Le Fèvre, J., 1950, 556. ${ }^{4}$ Calc. from atomic refractivities listed by Vogel, J., 1948, 1833. ${ }^{5}$ Buckingham and Le Fèvre, J., 1953, 3432. ${ }^{6}$ Audsley and Goss, J., 1941, 864; 1942, 358, 497. ${ }^{7}$ Smyth and McAlpine, J. Amer. Chem. Soc., 1934, 56, 1697. ${ }^{8}$ Extrapolated from molecular refractions by Vogel, $J ., 1948,1852 .{ }^{9}$ Taken as $1.05 R_{\mathrm{D}}{ }^{10}{ }^{10}$ Extrapolated from Jeffery and Vogel, J., 1948, 674. ${ }_{11}$ I.e., ${ }_{\infty} P_{2} .{ }^{12}$ From $R_{\mathrm{C}_{2} \mathrm{HCl}_{5}}$ listed in LandoltBörnstein's "Tabellen," 1912 Edn., plus constants given in ref. 4. ${ }^{13}$ Calc. from molecular refractions listed in ref. 12. ${ }^{14}$ Calc. from Vogel, $J ., 1948,607 .{ }^{15}$ Sugden and Groves, $J ., 1934,1094$. ${ }^{16}$ Cabannes, op. cit., Chap. XIII. ${ }^{17}$ Groves and Sugden, J., 1935, 971. ${ }^{18}$ Extrapolated from Vogel, J., 1948, 657.

* Values in parentheses in this column are calculated from $b_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ and data in Table 3; those in braces are explained in the text. Except for nitromethane, all others are derived by direct computation from $\infty_{(m} K_{2}$) and other observations now recorded.
$\dagger b_{3} \mathrm{CH}_{3} \cdot \mathrm{NO}_{2}$ calc. as $b_{3} \mathrm{OH}_{4}-0.07$ (from Table 3). If the assumption be made for nitromethane that $b_{2}=b_{3}$, then $b_{1}=0.527$, and $b_{2}=b_{3}=0.446 \times 10^{-23}$.
be set up for other molecules, and, by elimination . . . the longitudinal and transverse polarisabilities of the bonds can be obtained."

Wang introduced b_{1}, b_{2}, and b_{3} for acetone, and thus provided three new relations containing-as he supposed-two further unknowns only, viz., $b_{L}=0$ and $b_{T}{ }^{0}=0$; however, Wang's underlying assumption, that $b_{T}{ }^{0}=0=b_{V}{ }^{\mathrm{O}=0}$, is one with which we cannot agree. In general, attempts to solve for A, B, etc., by adding to an A, B, E, F system a double linkage (which would give rise to three extra and different expressions for b_{1}, b_{2}, and b_{3} of the derivative) must fail. Inevitably with the three new equations there will be produced as many new unknowns. If, instead, we add $\mathrm{C}-\mathrm{R}$ or $\mathrm{C} \equiv \mathrm{R}$, where $b_{L}{ }^{\mathrm{O}-\mathrm{R}} \neq b_{T}{ }^{\mathrm{O}-\mathrm{R}}=b_{V}{ }^{\mathrm{O}-\mathrm{R}}$ or $b_{L} 0 \equiv \mathrm{R} \neq b_{T}{ }^{0} \equiv \mathrm{R}=b_{V}{ }^{\circ} \equiv \mathrm{R}$, then admittedly we add only two unknowns, but the molecule under consideration will have an axis of symmetry and accordingly one equation is lost.

In conclusion, we submit that, if the tetrahedral arrangement of methane and its derivatives is to be assumed, it is not possible to evaluate A, B, C, and D by the additivity methods discussed so far. We instance the following example to substantiate our point :

$$
\begin{gather*}
A+2 B=0.75 \alpha^{\mathrm{OH}_{4}} . \tag{9}\\
C+2 D=0.75 \alpha^{\mathrm{CO}_{4}} \cdot \tag{10}\\
A / 3+8 B / 3+C=b_{1}{ }^{\circ \mathrm{H}_{3} \mathrm{Cl}} \tag{11}\\
4 A / 3+5 B / 3+D=b_{2}^{\mathrm{CH}_{3} \mathrm{Cl}} \tag{12}\\
C / 3+8 D / 3+A=b_{1} \mathrm{OHOl}_{3} \tag{13}\\
4 C / 3+5 D / 3+B=b_{2}{ }^{\mathrm{OHO}}{ }_{3} \tag{14}
\end{gather*}
$$

One might reasonably expect solution of A, B, C, and D from the above expressions (9)(14), but $\alpha^{\mathrm{OH}_{4}}+\alpha^{\mathrm{CCl}_{4}}=\alpha^{\mathrm{CH}_{2} \mathrm{Ol}}+\alpha^{\mathrm{CHCl}_{3}}$, i.e.,

$$
4 / 3(9)+4 / 3(10)=1 / 3\{(11)+2(12)\}+1 / 3\{(13)+2(14)\}
$$

or, (11), (12), (13), (14) are together transformable into (9) and (10), and accordingly we are reduced to two equations only, viz., (9) and (10), with the four unknowns A, B, C, and D. The same argument applies to any attempted handling on similar lines of A, B, C, and D from polarisability data drawn from all (tetrahedral) structures containing the links to which A, B, etc., relate.

Sachsse differed from Denbigh and Wang in taking account, where possible, of deviations from regular tetrahedral configurations; via appropriate equations for, e.g., $\mathrm{CH}_{3} \mathrm{Cl}_{1} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and CHCl_{3}, he obtained numerical values for A, B, C, D, etc. In particular, he found A and B to be 0.081×10^{-23} and 0.057×10^{-23}, respectively. These figures are not dissimilar from those of Wang (0.072×10^{-23} and 0.062×10^{-23}) or Denbigh $\left(0.079 \times 10^{-23}\right.$ and $\left.0.058 \times 10^{-23}\right)$, despite the criticisms indicated above. This, we suggest, is because A and B are both small and nearly equal; indeed if, following Ingold ("Structure and Mechanism in Organic Chemistry," Cornell Univ. Press, New York, 1953), we take $A=B$, then from (9) and ${ }_{\mathbb{G}} P^{\mathrm{OE}}{ }^{4}$ (Watson and Ramaswamy, loc. cit.), $A=$ $B=0.064 \times 10^{-23}$. Since the slight inconsistencies in A and B scarely affect the main objective of this paper, and because Sachsse's derivation seems the most firmly based, we propose to accept his values, rounding them off to $A=0.08 \times 10^{-23}$ and $B=0.06 \times 10^{-23}$.

From the $b_{1}{ }^{\mathrm{CH}_{4}}$ previously quoted (Watson and Ramaswamy, loc. cit.) the polarisabilities of the methyl radical follow as $b_{1}{ }^{0 \mathrm{H}_{3}}=0.17 \times 10^{-23}$ and $b_{2}{ }^{\mathrm{CH}_{3}}=b_{3} \mathrm{CH}_{\mathbf{2}}=0.19 \times 10^{-23}$. At once, by appropriate subtractions from the b 's of Table 4, estimates can be made of $b_{L} 0-\mathbf{x}$, $b_{r} \mathrm{O}-\mathrm{x}$, and $b_{D}{ }^{\mathrm{O}-\mathrm{x}}$. (The directions indicated by the subscripts L, V, and T are related to b_{1}, b_{2}, and b_{3} respectively in a molecule R-X.) Examples are included in Table 5. The $\mathrm{C} \rightarrow \mathrm{C}$ bond ellipsoid can be similarly deduced from ethane: Breazeale (loc. cit.) gives $B^{\mathrm{C}_{2} \mathrm{H}_{4}}$ as 10.4×10^{-12} at N.T.P.; $\left({ }_{m} K_{\text {gas }}\right)^{\text {N.T.P. }}$ is therefore 1.122×10^{-12}, and-since ${ }_{\mathrm{D}} P=$ $11 \cdot 16$ c.c. (Watson and Ramaswamy, loc. cit.) $-b_{1} \mathrm{C}_{2} \mathrm{H}_{4}=0.536 \times 10^{-23}$ and $b_{2}{ }^{\mathrm{C}_{2} \mathrm{H}_{4}}=b_{3} \mathrm{C}_{2} \mathrm{H}_{4}=$ 0.386×10^{-23}; after allowance for two methyl groups, $b_{L}{ }^{\mathrm{C-C}}$ is seen to be 0.20×10^{-23} and $b_{T}{ }^{\mathrm{C}-\mathrm{C}}$ to be 0.01×10^{-23}.

Polarisabilities of Molecules related as Alphyl-X and Aryl-X.-The comparison may be made by the procedure explained by Ingold (op.cit.) : from the molecular b's listed in Table 4 we subtract the appropriate b_{1}, b_{2}, or b_{3} of the radicals methyl or phenyl. (The former have been already given; the latter, from the results for $\mathrm{C}_{6} \mathrm{H}_{6}$ and the $\mathrm{C}-\mathrm{H}$ bond, are : $b_{1}=1.03 \times 10^{-23}, b_{2}=1.05 \times 10^{-23}$, and $b_{3}=0.67 \times 10^{-23}$). The upper part of Table 5 is thus obtained; the lower part shows the differences between the corresponding b_{L} 's, b_{∇} 's, etc., for aryl-X and alphyl-X links in the phenyl and methyl compounds.

We note at once that, except with the $\mathrm{C}-\mathrm{CH}_{3}$ link, the algebraic sign of the largest Δb in each case is the same as that of the exaltation of refraction revealed by a parallel treatment of refractivity data and listed by Ingold (op. cit., p. 127). The Δb_{i} 's of Table 4 thus seem, in part, harmonious with a conclusion already reached by this author, namely that the ". . . exaltation of polarisability produced by substituents . . . in aromatic combination, is concentrated along the dipole axis : indeed this exaltation is augmented
at the expense of polarisability in other directions. The whole effect is not very great for CH_{3}, but is larger for $\mathrm{Cl} .$. ." (op. cit., pp. 136, 137).

Table 5.* Principal axes for $\mathrm{C}-\mathrm{X}$ in various methyl and phenyl compounds.

Compound	b_{L}	$b_{\text {V }}$	b_{r}	Compound	b_{L}	b_{V}	b_{r}
$\mathrm{CH}_{3} \mathrm{~F}$	$0 \cdot 15$	$0 \cdot 04$	$0 \cdot 04$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$	$0 \cdot 10$	$0 \cdot 06$	$0 \cdot 04$
$\mathrm{CH}_{3} \mathrm{Cl}$............	$0 \cdot 34$	$0 \cdot 22$	0.22	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.........	$0 \cdot 44$	$0 \cdot 19$	$0 \cdot 15$
$\mathrm{CH}_{3} \mathrm{Br}$	$0 \cdot 49$	0.31	0.31	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	$0 \cdot 65$	$0 \cdot 16$	$0 \cdot 29$
$\mathrm{CH}_{3} \mathrm{I}$...........	$0 \cdot 70$	$0 \cdot 47$	0.47	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$	0.95	$0 \cdot 36$	$0 \cdot 47$
CH_{3}. CN	0.37	$0 \cdot 18$	$0 \cdot 18$	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CN}$......	$0 \cdot 61$	$0 \cdot 16$	$0 \cdot 18$
$\mathrm{CH}_{3} \cdot \mathrm{NO}_{2} \ldots \ldots . .$.	0.35	$0 \cdot 53$	-0.01	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}_{2} \ldots \ldots$.	0.57	$0 \cdot 34$	-0.01
$\mathrm{CH}_{3} \mathrm{CH}_{3} \ldots \ldots \ldots$	$0 \cdot 37$	$0 \cdot 20$	$0 \cdot 20$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$.........	$0 \cdot 35$	$0 \cdot 20$	$0 \cdot 23$
$\Delta b_{\mathrm{i}}=b_{\mathrm{i}}{ }^{\text {Aryl-X }}-b_{\mathrm{i}}{ }^{\text {Alphyl-X }}$							
	Δb_{L}	Δb_{V}	Δb_{r}		Δb_{L}	Δb_{V}	Δb_{r}
C-F	-0.05	$+0.02$	0	C-CN	$+0.24$	-0.02	0
C-Cl	$+0 \cdot 10$	-0.03	-0.07	$\mathrm{C}-\mathrm{NO}_{2}$	$+0.22$	-0.19	0
$\mathrm{C}-\mathrm{Br}$	$+0.16$	-0.15	-0.03	$\mathrm{C}-\mathrm{CH}_{3}$........	-0.02	0	+0.03
C-I	$+0.25$	-0.11	0				

Similar directed exaltations may be inferred for the disubstituted benzenes, both polar and non-polar, included in Table 4. When the bond values in Table 5, together with those for $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ already noted, are used in conjunction with b_{1}, b_{2}, and b_{3} of benzene, the ellipsoid of a given structure $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}_{2}$ can be computed and compared with that deduced from experiment; Table 6 summarises such calculations.

	Calculated			Found			Exaltations		
	b_{1}	b_{2}	b_{3}	b_{1}	b_{2}	b_{3}	Δb_{1}	Δb_{2}	Δb_{3}
1: $2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{3} \ldots$	$1.61{ }_{5}$	$1.46{ }_{5}$	1.01	$1 \cdot 64$	1.35	$1.07{ }_{5}$	$+0.02{ }_{5}$	$-0.11{ }_{5}$	$+0.06_{5}$
$1: 3-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2} \ldots$	$1 \cdot 46{ }_{5}$	$1.61{ }_{5}$	1.01	1.32	1.68	$1.07{ }^{5}$	$-0.14{ }_{5}$	$+0.06{ }_{5}$	$+0.06_{5}$
1:4-C ${ }_{6} \mathrm{H}_{4} \mathrm{Me}_{2}$...	1.69	$1.39{ }^{\text {a }}$	1.01	$1 \cdot 61$	$1 \cdot 40$	$1.07{ }^{\text {b }}$	-0.08	+0.01	$+0.06{ }^{\text {b }}$
$1: 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	$1 \cdot 63$	$1 \cdot 43$	1.05	1.92	1.28	0.90	$+0.29$	-0.15	-0.15
$1: 4-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Br}_{2}$.	1.93	1.61	1.23	$2 \cdot 19$	1.37	$1 \cdot 18$	+0.26	-0.24	-0.05
				ts	${ }^{23} \mathrm{c}$.				

With the two dihalogenobenzenes the positive exaltations along the $1: 4$-axes are notable, and compatible with the quoted statement by Ingold. Our results for the xylenes, however, resemble those for toluene in showing effects which, although slight, do not seem reconcilable either with the small positive exaltations of molecular refraction recognisable in these molecules or with the idea that such exaltations occur mainly along the $\mathrm{CH}_{3}-\mathrm{C}$ bond directions. Unavoidable errors could produce this situation : for example, if the longitudinal polarisability of the $\mathrm{CH}_{3}-\mathrm{C}_{\text {Alphyl }}$ link were lower than that shown in Table 5 by only $0.02-0.04$ unit, the difficulty would vanish; the figure in question is derived from the sole available measurements of the Kerr constant of ethane, those by Breazeale, on the gas, using light of $\lambda 6500 \AA$; and $b_{1}{ }^{\mathrm{C}_{2} \mathrm{H}_{4}}$ derived therefrom may be a little too high. Incidentally, the last point directly affects the magnitudes of $b_{L}{ }^{\mathrm{CO}-\mathrm{C}}$ and $b_{T}{ }^{\mathrm{O}-\mathrm{C}}$: taking these as 0.20×10^{-23} and 0.01×10^{-23} leads to a calculated average refractivity for the $\mathrm{C}-\mathrm{C}$ bond of $1.8-1.9$ c.c., whereas from a recent analysis (Vogel, Cresswell, Jeffery, and Leicester, J., 1952, 514) ca. $1 \cdot 3$ c.c. seems most probable. A similar check on the other bond data of this paper is made in Table 7.

Table 7. Calculated and found bond refractions.

C-F	Mean $R_{\text {Bond }}$ calc. ex Table 5 (c.c.)		Mean $R_{\text {Bond }}$ given by Vogel et al. for D line (c.c.)	
	Aliphatic	Aromatic	Aliphatic	Aromatic
	1.9	1.7	1.4*	1.5
$\mathrm{C}-\mathrm{Cl}$	$6 \cdot 6$	$6 \cdot 6$	6.5	$6 \cdot 6$
$\mathrm{C}-\mathrm{Br}$	$9 \cdot 4$	$9 \cdot 3$	$9 \cdot 4$	$9 \cdot 5$
C-I	13.9	$15 \cdot 1$	$14 \cdot 6$	$14 \cdot 6$
$\mathrm{C}-\mathrm{NO}_{2}$	$7 \cdot 4$	$7 \cdot 6$	$7 \cdot 4$	8.2
$\mathrm{C}-\mathrm{CN}$	6.2	8.0	$6 \cdot 1$	$7 \cdot 1$
$\mathrm{C}-\mathrm{CH}_{3}$	6.5	6.5	6.3	6.6

It appears that our figures for $b_{L}{ }^{\mathrm{O}-\mathrm{F}}$ and $b_{T}{ }^{\mathrm{O}-\mathrm{F}}$ are probably high (the observations on methyl fluoride-carbon tetrachloride mixtures were the most troublesome to make, and therefore the least certain experimentally, of all in this paper); however, Vogel et al. call their results for the fluoro-group " preliminary," and we note that their Tables 51 and 53 indicate for fluorobenzene an exaltation of about 0.04 c.c., which is positive, not negative as concluded from other sources by Ingold (op. cit., p. 127) and as shown in our Table 5 under Δb_{L}. The remaining cases in Table 7 display consistency which is reasonable in view of the larger b_{L}, b_{T}, and b_{V} data involved. Regarding $b_{L}{ }^{\mathrm{C}-\mathrm{H}}$ and $b_{T}{ }^{\mathrm{C}-\mathrm{H}}$, the values adopted in this work lead to $R_{\mathrm{C}-\mathrm{H}}=1.7 \mathrm{c} . \mathrm{c}$., in satisfactory accord with that reported by Vogel et al. for this bond.

The above questions directly concern the degree to which bond polarisability ellipsoids are constant throughout a range of different molecular structures involving them; it is relevant therefore now to consider the tert.-butyl halides (included in Table 4) in the same way as we already have the phenyl halides.

From the refractivity of neopentane we estimate R_{∞} to be 25.0 c.c., whence $b_{1}=$ $b_{2}=b_{3}=0.986 \times 10^{-23}$ c.c. After subtracting the polarisabilities appropriate for three $\mathrm{C}-\mathrm{H}$ links and one $\mathrm{C}-\mathrm{C}$ link (and assuming retention of tetrahedral angles), we obtain for the $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ unit : $b_{1}=0.62 \times 10^{-23}$ and $b_{2}=b_{3}=0.79 \times 10^{-23}$ c.c. Table 8 lists the principal axes which then follow for the carbon-halogen links in the three molecules

Table 8. tert.-Butyl halides.*

$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CX}$, together with their differences from the corresponding values for the related $\mathrm{CH}_{3}-\mathrm{X}$ structures. Positive exaltations along the axes of the bonds, and negative exaltations across them, thus seem to occur.

Finally, we refer to the case of hexachloroethane. The molar Kerr constant of this substance was determined by Sachsse (loc. cit.) who reported it as 4.9×10^{-12}. Our work confirms the low order of this value, and provides estimates of polarisability of 1.36×10^{-23} c.c. along the $\mathrm{C}-\mathrm{C}$ direction and of 1.66×10^{-23} for the two perpendicular directions. In theory, information on the $\mathrm{C}-\mathrm{C}$ link should now be accessible either via data on chloroform ($b_{1}=0.59 \times 10^{-23}, b_{2}=b_{3}=0.93_{5} \times 10^{-23}$; Le Fèvre and Le Fèvre, loc. cit.) and the $\mathrm{C}-\mathrm{H}$ bond (this paper), or data on carbon tetrachloride ($b_{1}=b_{2}=b_{3}=$ 1.013×10^{-23}) and the $\mathrm{C}-\mathrm{Cl}$ bond (this paper). However, the former method produces a negative quantity for $b_{T}{ }^{0-0}$. This is probably because the spatial arrangement of the CCl_{3} group in chloroform is not retained in hexachloroethane; elementary reasoning from volume requirements would suggest that the $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ angles in $\mathrm{C}_{2} \mathrm{Cl}_{6}$ should be less than those in CHCl_{3}. The latter route, starting from CCl_{4} and $\mathrm{C}-\mathrm{Cl}$ link data from Table 5, yields $b_{L}{ }^{0-0}=0.02 \times 10^{-23}$ c.c. and $b_{T}{ }^{0-0}=0.08 \times 10^{-23}$ c.c.

These values are in marked contrast to those drawn from methane and ethane, although they resemble Sachsse's results, which are $b_{L}{ }^{0-0}=0.02 \times 10^{-23}$ and $b_{T}{ }^{0-0}=0.05 \times 10^{-23}$ c.c. It is possible that the electron attracting $(-I)$ actions of the six chlorine atoms exert a "polarity" effect on the $\mathrm{C}-\mathrm{C}$ bond, making its electrons more tightly bound than those between the carbon atoms of ethane, so that a smaller $\mathrm{C}-\mathrm{C}$ polarisability in $\mathrm{C}_{2} \mathrm{Cl}_{6}$ than in $\mathrm{C}_{2} \mathrm{H}_{6}$ merely parallels the general diminishing order known for the polarisabilities of negatively charged, neutral, and positively charged atoms; alternatively, although it seems unlikely, hexachloroethane may be subject to double halogen hyperconjugation. Whatever the explanation, the case is a warning against accepting the anisotropic polarisabilities of bonds as constants throughout all molecular situations.

Conclusions.-Our measurements indicate (1) that changes in average polarisability consequent upon the introduction of a substituent with $\pm M$ character into the benzene ring are not uniformly distributed but tend to be " oriented in the direction along which the hyperconjugative or conjugative electromeric polarisability, allowed by the substituent,
should be effective" (Ingold, op. cit., p. 137), and (2) that in the tert.-butyl halides each C-Halogen bond shows an enhanced longitudinal polarisability, the increases running $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$; such effects may be a manifestation of inductomeric polarisability, for which this order of the halogens, and the greater effect with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ than with CH_{3}, is to be expected (cf. Ingold, op. cit., p. 73).

Experimental

Materials.—Carbon tetrachloride and benzene for use as solvents were both sulphur-free. We thank Messrs. I.C.I. (Australia and New Zealand) Ltd. for the gift of a bulk supply of the former, selected specially from a " middle cut." After drying $\left(\mathrm{CaCl}_{2}\right)$, fractionation, and storage over calcium chloride, it showed B values similar to those of most carefully purified specimens of "AnalaR" grade, and was therefore given no further treatment. Thiophen-free benzene was partially frozen, and the remelted solid kept over clean sodium wire.

The solutes were redistilled or recrystallised, as appropriate, before use and had the b. p.s or m. p.s recorded for pure samples in Beilstein's "Handbuch." The methyl bromide was part of that used for other work (cf. Buckingham and Le Fèvre, J., 1953, 3432). Methyl fluoride was generated as required by heating together potassium fluoride and potassium methyl sulphate (Batuecas and Moles, J. Chim. phys., 1919, 17, 537). Methyl chloride was obtained from methyl alcohol (Barclay and Le Fèvre, J., 1950, 556). Gases were dissolved by a technique similar to that used by Le Fèvre and Ross ($J ., 1950,283$) for sulphur dioxide.

Measurements.-These were made by the methods described in our previous paper (J., 1953, 4041), where the symbols used here are defined, and the extrapolation procedure explained. The observations recorded in Table 9 are for either 20° or 25°, at which temperatures the following data for the solvents are taken :

Temp.	$10^{7} B_{\mathrm{D}}$	$n_{\text {D }}$	$d_{4}{ }^{\text {a }}$	ε_{t}	H	J	$10{ }^{14}{ }_{\text {g }} \mathrm{K}_{1}$
Carbon tetrachloride.							
20°	0.072	1.4604	1.5940	$2 \cdot 2360$	$2 \cdot 064$	0.4721	0.761
25	0.070	1.4575	1.5845	$2 \cdot 2270$	2.060	$0 \cdot 4731$	0.749
Benzene							
20	$0 \cdot 424$	1.5010	0.8791	$2 \cdot 2825$	$2 \cdot 119$	$0 \cdot 4670$	7.72
25	$0 \cdot 410$	1.4973	$0 \cdot 8738$	$2 \cdot 2725$	2.114	$0 \cdot 4681$	$7 \cdot 56$

Table 9. Weight-fractions, Kerr constants, refractive indexes, densities, and dielectric constants of solutions.

$10^{5} w_{2}$	$10^{7} B_{12}$	$\left(n_{D}{ }^{\prime}\right)_{12}$	$\left(d_{4}\right)_{12}$	$\left(\varepsilon_{t}\right)_{12}$	$10^{5} w_{2}$	$10^{7} B_{12}$	$\left(n_{\text {d }}{ }^{t}\right)_{12}$	$\left(d_{4}{ }^{\prime}\right)_{12}$	$\left(\varepsilon_{t}\right)_{12}$
Methyl fluoride in carbon tetrachloride at 20°.									
15	$0.072{ }_{5}$	-	1.5937	$2 \cdot 2366$	98	0.081	1.4598	1.5922	2.2540
26	$0.074{ }_{5}$	-	1.5935	$2 \cdot 2398$	101	0.082	$1 \cdot 4600$	1.5921	$2 \cdot 2535$
29	0.075		1.5935	$2 \cdot 2395$	119	0.083	$1 \cdot 4598$	1.5921	$2 \cdot 2539$
34	0.075	-	1.5934	$2 \cdot 2417$	185	0.085	$1 \cdot 4595$	1-5904	$2 \cdot 2660$
Whence $\Sigma\left(\Delta B . w_{2}\right) / \Sigma w_{2}{ }^{2}=8.2{ }_{5}$.									
Methyl chloride in carbon tetrachloride at 25°.									
180	0.084	1.4573	1.5821	$2 \cdot 2466$	922	$0 \cdot 135$	$1 \cdot 4557$	1.5745	$2 \cdot 3275$
390	0.098	$1 \cdot 4569$	1.5804	2.2695	971	$0 \cdot 136$	1.4556	1.5739	$2 \cdot 3328$
882	$0 \cdot 122$	$1 \cdot 4558$	1.5749	$2 \cdot 3239$	1184	$0 \cdot 153$	1.4552	1.5717	$2 \cdot 3568$
889	$0 \cdot 133$	$1 \cdot 4558$	1.5747	$2 \cdot 3240$	1441	$0 \cdot 174$	1-4547	1.5688	$2 \cdot 3846$
Whence $\Delta B=6.21 w_{2}+67 w_{2}{ }^{2}$.									
Methyl bromide in carbon tetrachloride at 25°.									
24	0.080	1.4575	1.5846	$2 \cdot 2284$	859	$0 \cdot 115$	1.4571	1.5852	$2 \cdot 2754$
497	0.095	1.4573	1.5849	$2 \cdot 2555$	984	$0 \cdot 122$	$1 \cdot 4571$	1.5853	2.2829
611	$0 \cdot 101$	$1 \cdot 4572$	1.5850	$2 \cdot 2617$	1004	$0 \cdot 121$	$1 \cdot 4571$	1.5854	$2 \cdot 2833$
732	$0 \cdot 108$	1-4572	1.5851	$2 \cdot 2685$	1866	$0 \cdot 166$	1-4568	1.5858	$2 \cdot 3318$
Whence $\Delta B=5 \cdot 20 w_{2}-3 \cdot 0 w_{2}{ }^{2}$.									
Methyl iodide in carbon tetrachloride at 25°.									
1148	$0 \cdot 117$	1.4580	1.5899	$2 \cdot 2626$	6705	$0 \cdot 322$	1.4605	1.6153	$2 \cdot 4348$
2675	$0 \cdot 167$	1.4589	1.5968	2.3126	7689	0.350	1.4608	1.6206	$2 \cdot 4730$
2938	$0 \cdot 175$	1.4590	1.5980	$2 \cdot 3210$	9171	$0 \cdot 408$	1-4616	1.6258	$2 \cdot 5296$
5502	$0 \cdot 270$	1.4598	1.6098	$2 \cdot 4031$					
Whence $\Delta B=3.63 w_{2}-0.23 w_{2}{ }^{2}$									

Table 9. (Continued.)

$10^{5} w_{2}$	$10^{7} B_{12}$	$\left(n_{\text {D }}{ }^{2}\right)_{12}$	$\begin{gathered} \left(d_{4}^{t}\right)_{12} \\ \text { Nitr } \end{gathered}$	${ }_{\left(\varepsilon_{t}\right)_{12}}^{\text {methan }}$	$10^{5} w_{2}$	$\begin{aligned} & 10^{7} B_{12} \\ & 25^{\circ} . \end{aligned}$	$\left(n_{D}\right)_{12}$	$\left(d_{4}{ }^{t}\right)_{12}$	$\left(\varepsilon_{6}\right)_{12}$
1019	$0 \cdot 522$	1.4961	0.87590	$2 \cdot 4499$	2902	$0 \cdot 759$	1.4940	$0 \cdot 87978$	$2 \cdot 7774$
1287	$0 \cdot 559$	1.4958	$0 \cdot 87646$	$2 \cdot 4951$	3277	0.782	1.4936	$0 \cdot 88060$	$2 \cdot 8394$
2411	$0 \cdot 676$	$1 \cdot 4946$	$0 \cdot 87879$	$2 \cdot 6944$	4016	$0 \cdot 885$	$1 \cdot 4927$	$0 \cdot 88213$	2.9713
Whence $\Delta B=10.90 w_{2}+22.1 w_{2}{ }^{2}$.									
Acetonitrile in carbon tetrachloride at 25°.									
366	$0 \cdot 266$	1.4565	1.5785	2.4283	1423	$0 \cdot 829$	1.4538	1.5610	3.0182
485	$0 \cdot 340$	$1 \cdot 4562$	1.5765	$2 \cdot 4938$	2015	$1 \cdot 095$	$1 \cdot 4522$	1.5510	$3 \cdot 3352$
735	$0 \cdot 515$	$1 \cdot 4555$	1.5724	2.6386	3369	$1 \cdot 894$	$1 \cdot 4486$	1.5287	$4 \cdot 1136$
1073	$0 \cdot 603$	$1 \cdot 4547$	1.5668	2.8301					
Whence $\Delta B=51 \cdot 6_{5} w_{\mathrm{a}}+63 w_{\mathrm{g}}{ }^{2}$.									
tert.-Butyl chloride in carbon tetrachloride at 25°.									
104	$0 \cdot 087$	1.4574	1.5831	$2 \cdot 2367$	1483	0.200	1.4559	$1 \cdot 5645$	$2 \cdot 3659$
670	$0 \cdot 134$	1.4570	1.5753	$2 \cdot 2897$	2067	$0 \cdot 255$	1.4552	1.5568	$2 \cdot 4208$
1020	$0 \cdot 153$	1.4562	1.5705	$2 \cdot 3226$	2394	$0 \cdot 279$	$1 \cdot 4546$	1.5524	$2 \cdot 4516$
Whence $\Delta B=8.80 w_{2}-0.20 w_{2}{ }^{2}$.									
tert.-Butyl bromide in carbon tetrachloride at 25°.									
570	$0 \cdot 130$	-	1.5817	$2 \cdot 2657$	1957	0.301	1.4574	1-5747	$2 \cdot 3601$
1220	$0 \cdot 210$	1.4575	1.5785	$2 \cdot 3111$	3643	$0 \cdot 576$	$1 \cdot 4573$	1.5670	$2 \cdot 4765$
1791	$0 \cdot 291$	1.4574	1.5756	$2 \cdot 3470$					

567	$0 \cdot 123$	1.4576	1.5834	$2 \cdot 2503$	2651	$0 \cdot 331$	1.4583	1.5795	2.3516
1734	$0 \cdot 240$	1.45795	1.5807	$2 \cdot 2997$	3110	$0 \cdot 3795$	$1.4583{ }_{5}$	1.5786	$2 \cdot 3731$
2048	$0 \cdot 273$	1.4580	1-5806	$2 \cdot 3273$	3706	0.435	1.4586	$1 \cdot 5776$	$2 \cdot 4190$
Whence $\Delta B=10 \cdot 4 w_{2}-17 w_{2}{ }^{2}$.									
Hexachloroethane in carbon tetrachloride at 25°.									
607	0.072	1.4579	1.5855	2.2289	2495	0.078	1.4590	1.5890	$2 \cdot 2334$
995	0.073	1.4580	1.5862	$2 \cdot 2295$	3045	0.080	-	-	-
1146	0.073	1.4581	1.5865	$2 \cdot 2300$	5292	$0 \cdot 099$	-	-	-
2476	0.078	1.4589	1-5889	$2 \cdot 2332$					

Benzene in carbon tetrachloride at 20°.									
2325	$0 \cdot 081$	1.4624	1.5761	2.2412	6,832	$0 \cdot 122$	1.4669	1.5098	$2 \cdot 2510$
3893	0.097	1.4639	1-5444	$2 \cdot 2447$	9,064	$0 \cdot 135$	1.4694	1.4835	$2 \cdot 2559$
4110	$0 \cdot 100$	$1 \cdot 4644$	$1 \cdot 5424$	$2 \cdot 2468$	10,806	$0 \cdot 148$	1.4714	1.4655	$2 \cdot 2613$
6085	$0 \cdot 109$	1.4664	1.5198	$2 \cdot 2500$	17,673	$0 \cdot 174$	1.4779	$1 \cdot 3785$	$2 \cdot 2749$
Whence $\Delta B=0.756 w_{3}-0.96 w_{8}{ }^{2}$.									
Toluene in carbon tetrachloride at 25°.									
1524	0.092	-	-	-	7205	$0 \cdot 165$	1.4625	1.4952	$2 \cdot 2687$
1593	0.093	1.4586	1.5849	$2 \cdot 2362$	7651	$0 \cdot 168$	1.4629	1.4893	$2 \cdot 2717$
2883	$0 \cdot 104$	1.4594	1.5490	$2 \cdot 2437$	8666	$0 \cdot 187$	--	-	-
2968	$0 \cdot 106$	1.4596	1.5480	$2 \cdot 2440$	12,276	$0 \cdot 248$	-	-	-
4774	$0 \cdot 133$	1.4608	1.5237	$2 \cdot 2548$	17,707	$0 \cdot 351$	-	-	-
6717	$0 \cdot 160$	1.4624	1.5012	$2 \cdot 2658$	21,185	$0 \cdot 422$	-	-	-
6972	$0 \cdot 176$								

Whence $\bar{\Delta}=1 \cdot 19 w_{2}+2 \cdot 2 w_{2}{ }^{2}$.
Fluorobenzene in carbon tetrachloride at 20°.

1156	$0 \cdot 139$	1.4605	1.5833	2.2880	1729	$0 \cdot 175$	$1 \cdot 4605$	1.5784	$2 \cdot 3103$
1458	$0 \cdot 159$	1.4605	1.5806	$2 \cdot 2988$	1853	$0 \cdot 180$	$1 \cdot 4605$	1.5770	$2 \cdot 3156$
1602	0-164	$1 \cdot 4605$	1.5794	2-3049	3637	$0 \cdot 296$	$1 \cdot 4607$	1.5619	$2 \cdot 3909$
Whence $\Delta B=5 \cdot 628 w_{2}+14.5 w_{2}{ }^{2}$.									
Bromobenzene in carbon tetrachloride at 25°.									
806	$0 \cdot 155$		1.5837	$2 \cdot 2534$	2411	$0 \cdot 324$	$1 \cdot 4600$	1.5822	$2 \cdot 3015$
1122	$0 \cdot 188$	1.4587	1.5835	$2 \cdot 2615$	2599	0.355	$1 \cdot 4603$	1.5820	$2 \cdot 3068$
1398	0.213	-	1.5832	$2 \cdot 2698$	2664	$0 \cdot 361$	$1 \cdot 4604$	1.5818	$2 \cdot 3083$
1700	$0 \cdot 252$	1.4594	1.5827	$2 \cdot 2795$	3114	$0 \cdot 408$	$1 \cdot 4607$	1.5812	$2 \cdot 3220$
Whence $\Delta B=10 \cdot 19 w_{2}+23 \cdot 6 w_{2}{ }^{2}$.									
Iodobenzene in carbon tetrachloride at 20°.									
337	$0 \cdot 108$	$1 \cdot 4609$	1-5947	$2 \cdot 2441$	4881	0.492	1.4675	$1 \cdot 6042$	$2 \cdot 3512$
662	$0 \cdot 131$	$1 \cdot 4613$	1.5954	$2 \cdot 2509$	5302	0.534	1.4680	$1 \cdot 6051$	$2 \cdot 3580$
2865	$0 \cdot 320$	$1 \cdot 4645$	1-6002	$2 \cdot 3019$	5649	$0 \cdot 566$	1.4685	1.6059	2.3654

[^0]Table 9. (Continued.)

$10^{5} w_{2}$	$10^{7} B_{12}$	$\left(n_{\text {D }}{ }^{t}\right)_{12}$	$\left(d_{4}^{i}\right)_{12}$ Benzoni	$\begin{aligned} & \left(\varepsilon_{i}\right)_{12} \\ & \mathrm{e} \text { in carl } \end{aligned}$	$\begin{gathered} 10^{3} w_{2} \\ \text { tetrachl } \end{gathered}$	$\begin{aligned} & 10^{7} B_{12} \\ & \text { de at } 2 \end{aligned}$	$\left(n_{D}{ }^{t}\right)_{12}$	$\left(d_{4}\right)_{12}$	$\left(\varepsilon_{t}\right)_{12}$
86	$0 \cdot 171$	1.4605	1.5932	$2 \cdot 2632$	404	0.512	$1-4609$	1.5903	$2 \cdot 3633$
317	$0 \cdot 433$	$1 \cdot 4608$	1.5912	$2 \cdot 3363$	788	0.930	$1 \cdot 4613$	1.5870	$2 \cdot 4838$
400	0.508	1-4609	1-5904	$2 \cdot 3623$	926	1-141	$1 \cdot 4615$	1.5858	$2 \cdot 5271$
Whence $\Delta B=106 \cdot 2 w_{2}+778 w_{2}{ }^{2}$.									
0 -Xylene in carbon tetrachloride at 20°.									
1546	$0 \cdot 104$	1.4618	1.5742	$2 \cdot 2457$	6501	0.206	1-4665		
2465	$0 \cdot 125$	$1 \cdot 4626$	1-5622	$2 \cdot 2522$	8097	$0 \cdot 236$	$1 \cdot 4680$	1.4956	$2 \cdot 2866$
5870	$0 \cdot 193$	$1 \cdot 4660$	1.5190	2-2730	8299	$0 \cdot 242$	1.4681		
Whence $\Delta B=2.14 w_{2}-1.3 w_{2}{ }^{2}$.									
m-Xylene in carbon tetrachloride at 20°.									
996	0.079	1.4609	$1 \cdot 5805$	2.2395	9,970	$0 \cdot 176$	$1 \cdot 4670$	1.4695	$2 \cdot 2610$
4542	$0 \cdot 119$	1.4633	1.5344	$2 \cdot 2486$	16,138	0.233	$1 \cdot 4705$	$1 \cdot 4013$	$2 \cdot 2783$
9839	$0 \cdot 174$	1.4668	$1 \cdot 4703$	$2 \cdot 2601$	18,980	$0 \cdot 266$	1-4720	1-3725	$2 \cdot 2891$
Whence $\Delta B=1.044 w_{2}-0.16 w_{2}{ }^{2}$.									
p-Xylene in carbon tetrachloride at 25°.									
1248	0.079	1.4584	1.5677	$2 \cdot 2302$	8,711	$0 \cdot 145$	1-4634	$1 \cdot 4752$	2.2396
2165	0.086	1.4590	1.5564	2.2313	11,461	$0 \cdot 165$	$1 \cdot 4662$	1-4554	2.2499
3898	$0 \cdot 093$	$1 \cdot 4603$	1.5336	$2 \cdot 2340$	43,240	$0 \cdot 427$	1-4817		$2 \cdot 3138$
Whence $\Delta B=0.816 w_{2}+0.14 w_{2}{ }^{2}$.									
p-Dichlorobenzene in carbon tetrachloride at 25°.									
303	0.076	1.4580	1.5836	2.2279	1754	0.108	$1 \cdot 4600$	1.5793	2.2325
754	$0 \cdot 090$	1.4585	1.5822	$2 \cdot 2293$	1939	$0 \cdot 112$	$1 \cdot 4603$	$1 \cdot 5786$	$2 \cdot 2330$
1297	$0 \cdot 098$	1.4595	1.5806	$2 \cdot 2310$	2171	$0 \cdot 118$	$1 \cdot 4605$	$1 \cdot 5780$	$2 \cdot 2338$
Whence $\Delta B=2 \cdot 38{ }_{5} w_{2}-10 w_{2}{ }^{2}$.									
p-Dibromobenzene in carbon tetrachloride at 20°.									
1261	0.093	1.4620	1.5980	2.2391	1746	0.101	$1 \cdot 4626$	1.5995	$2 \cdot 2404$
1521	0.097	1.4623	1.5990	$2 \cdot 2398$	1985	0.105	-	-	-
1731	$0 \cdot 100$	-	-	-	2081	$0 \cdot 107$	-	-	-

$10^{5} w_{8}$	$10^{7} B_{19}$	$\left(n_{D}{ }^{\prime}\right)_{18}$ He	$\left(d_{4}\right)_{12}$ methyl	$\left(\varepsilon_{t}\right)_{12}$ zene in	${ }^{10} 0^{3} w_{8}$	${ }^{107} B_{12}$	$\begin{aligned} & \left(n_{\mathrm{D}}\right)_{1 \mathrm{~g}} \\ & 25^{\circ} . \end{aligned}$	$\left(d_{4}\right)_{12}$	$\left(\varepsilon_{t}\right)_{18}$
219	0.072	1.4580	1.5821	2.2275	1142	0.081	1.4594	1.5719	2.2299
579	0.075	$1 \cdot 4584$	1.5781	$2 \cdot 2276$	1732	0.080	1.4608	1.5655	2.2322
691	0.076	$1 \cdot 4585$	1-5769	2.2287	2768	$0 \cdot 089$	$1 \cdot 4628$	1.5540	2.2337
896	0.076	$1 \cdot 4592$	1-5746	$2 \cdot 2290$					
Whence $\Delta B=0.819 w_{2}-5.6 w_{2}{ }^{2}$.									
Hexachlorobenzene in benzene at 20°.									
248	$0.428{ }_{5}$	-	-	-	1351	$0 \cdot 451$	1.5020	0.8852	2.2867
878	0.441	1.5016	0.8831	$2 \cdot 2859$	1738	0.459	1.5023	0.8870	$2 \cdot 2872$
935	$0 \cdot 442$	-	-	-	2474	0.547	1.5028	$0 \cdot 8904$	$2 \cdot 2905$

Whence $\overline{\Delta B}=1.88 w_{2}+7.6 w_{\mathbf{2}}{ }^{2}$.

From the information contained in Table 9, molar Kerr constants at infinite dilution are calculated in Table 10. Since $\alpha \varepsilon_{1}, \gamma n_{1}$, and βd_{1} do not affect the results very critically they have been estimated in all cases as the quotients: Σ (differences between solutions and solvent) $/ \Sigma w_{2}$. In deducing the standard errors of $B_{1} \delta$, the equations quoted by Harris, Le Fèvre, and Sullivan (J., 1953, 1622) have been utilised, the quantities ΔB replacing those written as δQ by these authors.

Table 10. Calculation of molar Kerr constants at infinite dilution.

Temp.	Solute	Solvent	$\alpha \varepsilon_{1}$	β	$\boldsymbol{\gamma}$	δ	$\begin{gathered} \pm \% \text { Std. } \\ \text { error } \\ \text { on } B_{1} \delta \end{gathered}$	No. of solns. giving $B_{1} \delta$	$\stackrel{\infty}{\times}\left(m K_{2}\right)$
20°	$\mathrm{CH}_{3} \mathrm{~F}$	CCl_{4}	16	-1.15	-0.34	114	10.5	8	28.3
25	$\mathrm{CH}_{3} \mathrm{Cl}$	${ }_{4}$	$10 \cdot 9$	-0.690	-0.130	88.7	$6 \cdot 0$	8	$32 \cdot 3$
25	$\mathrm{CH}_{3} \mathrm{Br}$,"	$5 \cdot 72$	0.051	-0.028	$74 \cdot 3$	$1 \cdot 3$	8	$51 \cdot 6$
25	$\mathrm{CH}_{3} \mathrm{I}$	"	$3 \cdot 20$	$0 \cdot 290$	0.031	51.9	3.8	7	$54 \cdot 2{ }_{5}$
25	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	17.4	$0 \cdot 238$	-0.076	26.6	3.5	6	$89.0{ }^{\text {b }}$
25	$\mathrm{CH}_{3}{ }^{\text {CN }}$	CCl_{4}	$55 \cdot 7$	-1.044	-0.181	738	$2 \cdot 8$	7	219.5
25	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$,	$9 \cdot 37$	-0.852	-0.077	126	$3 \cdot 6$	6	$85 \cdot 6$
25	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$,	6.81	-0.309	-0.003	144	$2 \cdot 5$	5	146
25	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}$,"	$4 \cdot 77$	-0.121	0.019	149	$2 \cdot 6$	6	203
25	$\mathrm{C}_{2} \mathrm{Cl}_{6}$	"	0.259	0.111	$0 \cdot 039$	$1 \cdot 87$	$6 \cdot 0$	7	4.60
20	$\mathrm{C}_{6} \mathrm{H}_{6}$	"	$0 \cdot 227$	-0.755	0.067	10.5	$5 \cdot 1$	8	$7 \cdot 24$
25	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{3}$	"	0.511	-0.784	0.048	$17 \cdot 0$	1.9	13	$12 \cdot 8$
20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$	"	$4 \cdot 31$	-0.567	0.005	78.2	1.4		56.8
20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	",	$4 \cdot 84$	-0.431	0.043	170		8	145*
25	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$,"	$3 \cdot 10$	-0.075	0.073	146	1.6	8	171
20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$		$2 \cdot 31$	$0 \cdot 132$	0.099	120	$0 \cdot 8$	6	186
20	$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NO}_{2}$	CCl_{4}	$25 \cdot 6$	-0.322	$0 \cdot 063$	1156	1.	8	1073*
20	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{\text {c }} \mathrm{CN}$	"	31.5	$-0.560{ }_{5}$	0.082	1475	2.5		1147
20	$1: 2-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$,	0.631	-0.784	0.064	29.7	1.0	6	$25 \cdot 15$
20	$1: 3-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$	"	0.266	-0.763	$0 \cdot 043$	14.5	1.6	O	$13.0{ }^{\text {b }}$
25	$1: 4-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$	"	0.193	-0.770	0.052	11.7	$4 \cdot 1$		$10 \cdot 6$
25	1: $4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	"	$0 \cdot 310$	-0.190	0.098	34-1	$4 \cdot 6$	6	38.6
20	$1: 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2}$	"	$0 \cdot 250$	0.201	0.086	21.9	$4 \cdot 9$	6	$40 \cdot 3$
20	1:3:5- $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{3}$	"	$0 \cdot 165$	-0.840	0.004	$9 \cdot 28$	$2 \cdot 8$		$10 \cdot 1$
20	1:3:5-C $\mathrm{H}_{3} \mathrm{Cl}_{8}$,	$0 \cdot 404$	-0.122	0.079	$26 \cdot 4$	$3 \cdot 2$	5	$37 \cdot 6$
20	1:3:5- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}$		0.324	0.317	0.084	$9 \cdot 69$	6.6	6	$24 \cdot 3$
25	1:3:5-C. ${ }_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{3}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	$0 \cdot 391$	${ }_{-0.472} \dagger$	$0.039 \dagger$	$10 \cdot 1$	$7 \cdot 2$	6	168
25	$\mathrm{C}_{6}\left(\mathrm{CH}_{3}\right)_{6}$	CCl_{4}	$0 \cdot 244$	-0.695	$0 \cdot 125$	11.7	$6 \cdot 8$	7	16.0
20	$\mathrm{C}_{6} \mathrm{Cl}_{6}$	"	$0 \cdot 315$	0.517_{5}	$0 \cdot 049$	$4 \cdot 43$	$0 \cdot 2$	6	$103 \cdot 6$

* Recalc. from Le Fèvre and Le Fèvre, $J ., 1953,4041$.
\dagger Calc. from data of Le Fèvre and Le Fevre, J., 1935, 957.
Molar Kerr constants for eight of the above solutes in carbon tetrachloride are to be found in the literature. The earlier values given for benzene, chlorobenzene, and nitrobenzene are quoted in our previous paper, those for the remaining five substances are noted here (all determined at 4° with light of $\lambda=5461 \AA$) :

```
\(\mathrm{CH}_{3} \mathrm{Cl}\).................. \(40.8 \times 10^{-12}\) (Sachsse, Physikal. Z., 1935, 36, 360)
```


Since neither Sachsse nor Otterbein gives B versus concentration figures, we are unable to check the extrapolations of ${ }_{m} K_{2}$ to infinite dilution; presumably they evaluated ${ }_{m} K_{2}$ for each individual solution-as did Briegleb, Friedrichs, et al. (see Le Fèvre and Le Fèvre, J., 1953, 4041, for references)-and then attempted graphical extrapolation. From our experience we suspect the main cause of differences from the results on the right of Table 10 to lie in this procedure.

We acknowledge with gratitude the encouragement and advice we have received at all times from Professor C. K. Ingold, F.R.S., both through correspondence and, particularly, from him personally while he was in Sydney during 1952. We thank also the Royal Society and Messrs. I.C.I. (A.N.Z.) Ltd. for grants with which our apparatus has been purchased.

School of Chemistry, University of Sydney, n.S.W., Australia.
[Received, October 15th, 1953.]

[^0]: Whence $\Delta B=8 \cdot 642 w_{\mathbf{3}}+1 \cdot 04 w_{2}{ }^{2}$

